헬스케어

Wi-Fi는 헬스케어 분야 전반의 네트워크에 이미 널리 구축되어 다양한 환경에서 의료 서비스의 유연성과 효율성을 향상시키고 있습니다. 향후 5년 간 IoT 관련 의료기기 출하량이 15% 증가할 것으로 전망됩니다1. 또한 의료 데이터 분석 시장 자체만도 2020년 미화 680억 달러 규모까지 성장할 것으로 예상됩니다2.  인공지능(AI), 웨어러블, mHealth(mobile health) 등 다른 주요 영역에서도 발전이 이루어질 것입니다. 바야흐로 병원 안팎에서 커넥티드 의료의 새로운 시대가 열리고 있습니다.

Wi-Fi는 이러한 역동적인 환경에 이상적입니다. 왜냐하면 고성능 연결, 정부 등급의 WPA3™ 보안, 레거시 기기 지원을 제공하는 가장 신뢰할 수 있는 유비쿼터스 무선 기술 중 하나이기 때문입니다. Wi-Fi는 병원과 의료 현장에서 뿐만 아니라 개인 건강과 피트니스 시장에도 솔루션을 제공합니다.

Wi-Fi는 헬스케어 시설의 IT 관리자가 의료진과 환자, 보호자의 증가하는 연결 요구를 지원할 수 있도록 해줍니다.  헬스케어 네트워크에 연결된 Wi-Fi 기기 수가 갈수록 증가하는 상황에서 Wi-Fi CERTIFIED™ 장비는 광범위한 상호운용성과 원활한 사용자 환경이 보장되도록 지원합니다.

헬스케어 분야에 최신 기능을 제공하는 지속적인 개발 로드맵

최신 버전의 Wi-Fi인 Wi-Fi CERTIFIED 6는 헬스케어 시설에서 상호운용성, 보안, 편리성과 같은 주요 이점을 유지하면서 커버리지, 용량, 효율성을 획기적으로 증대시킵니다. Wi-Fi CERTIFIED기기는 하위 호환이 가능하므로 신규 기기와 기존 기기가 원활하게 연동될 수 있습니다.

Wi-Fi CERTIFIED 6의 핵심 기능은 Wi-Fi 네트워크가 수백, 수천 대의 기기들이 동시에 연결을 요구하는 밀집된 환경을 효율적으로 처리하도록 하는 데 중점을 둡니다. 대기실의 게스트 기기에서부터 소형 모니터링 장치와 대역폭 집약적인 영상 장비에 이르기까지 Wi-Fi CERTIFIED 6 네트워크는 모든 종류의 사용자들을 효율적, 효과적으로 지원할 수 있습니다.

1 ABI Research, 2019
2 Frost & Sullivan, 2019

Video

  • 하루라도 Wi-Fi 없이 살 수 있을까요?

Frequently Asked Questions

What is mobility in a healthcare setting?

Mobility is used to describe continuous network connectivity, providing the user with anytime, anywhere access to social media, clinical, or business application data. When Wi-Fi® client devices and the hospital network to which they connect properly support mobility, a wireless device can access the network while on the move anywhere in the building and sometimes outside of the building (e.g. walkways between buildings). To properly support mobility in hospitals, adherence to best practices in the design, installation, and management of the Wi-Fi network and devices is essential.

What is a mobile Wi-Fi device, and how is it different from a non-mobile Wi-Fi device?

Mobile devices refer to those used by an end user who moves about the hospital or healthcare facility and requires a persistent connection. Examples are patient-worn telemetry devices that continuously monitor the vital signs of an ambulatory patient, or a smart phone that provides a physician attending to a patient instant access to all of the clinical systems required to provide care.

Why does a Wi-Fi client roam from one AP to another?

There are many reasons why a client will roam from one AP to another, the most common one being when a client moves from the radio frequency (RF) boundary of one AP to another AP. Healthcare environments are often very challenging from an RF planning standpoint, due to their physical structure, with long hallways, isolated patient rooms, and shielded radiology areas. These physical challenges can create abrupt transitions between AP coverage areas and inhibit fast and efficient roaming performance. With the strict performance and availability requirements of medical devices, significant emphasis on establishing a robust and reliable Wi-Fi network is important.

What is off-channel scanning for Wi-Fi client devices?

Off-channel scanning is when a Wi-Fi client device tunes its radio to another channel to look for available APs or scans for APs on a channel to which it is not connected (hence “off-channel”). The client scans the off-channel APs looking for a suitable AP to connect to in case it needs to roam from its current ‘on-channel’ AP.

What is off-channel scanning for Wi-Fi access points (APs)?

An access point (AP) can also perform off-channel scanning. This process is the same as off-channel scanning for Wi-Fi client devices and essentially allows the AP to tune its radio to a different channel for a finite amount of time. Off-channel scanning is typically used as a method to detect sources of interference, rogue or unauthorized ad-hoc Wi-Fi networks. The operation of performing off-channel scanning is highly dependent in terms of manufacturer implementation and configuration of the WLAN.

What is the impact on clients when APs perform off channel scanning?

When an AP is performing an off channel scan, the client devices that are connected to it will not be able to send traffic to the network. This can be disruptive to real time streaming devices that rely on a persistent connection. Care should be taken in the configuration of off-channel scanning.

What are passive and active scanning?

The reason for client scanning is to determine a suitable AP to which the client may need to roam now or in the future. A client can use two scanning methods: active and passive. During an active scan, the client radio transmits a probe request and listens for a probe response from an AP. With a passive scan, the client radio listens on each channel for beacons sent periodically by an AP. A passive scan generally takes more time, since the client must listen and wait for a beacon versus actively probing to find an AP. Another limitation with a passive scan is that if the client does not wait long enough on a channel, then the client may miss an AP beacon.

What is dynamic frequency selection (DFS)?

In many countries, regulatory requirements may limit the number of 5 GHz channels available or place additional restrictions on their use because the spectrum is shared with other technologies and services. For instance, in the US and other countries, some of the Unlicensed National Information Infrastructure (U-NII) bands are used by radar systems. Wi-Fi networks operating in those bands are required to employ a radar detection and avoidance capability. The IEEE 802.11h standard addresses this requirement by adding support for DFS and transmit power control (TPC) on every DFS channel.

How does DFS work?

If a Wi-Fi AP detects a radar system on a channel with DFS enabled, the AP must announce to associated client devices that it is vacating the channel on which the radar is detected and the new channel to which it is moving. The client devices must immediately vacate the channel and are expected to associate to an AP on a different channel.

How does DFS affect mobility?

For the 5 GHz bands that include DFS channels, clients are forbidden from performing active scans and must only use passive scanning. This can increase the time required to identify and select candidate roaming targets. This increase in scanning time may prevent some clients from keeping their connection active while roaming across APs.

When an AP detects radar it is allotted a period of time to search for available channels. This time period may exceed the application connectivity threshold and cause a client to lose its connection even though the DFS rules were strictly followed.

In some environments, it may be preferable to restrict RF usage to channels in which DFS is not mandated. Consult the country-specific regulations to determine which channels are DFS mandated.

What is the impact of security mechanisms on mobility?

The healthcare industry adheres to another layer of security requirements prescribed by laws addressing privacy and a patient’s clinical information (e.g. HIPAA (Health Insurance Portability and Accountability Act, PCI (Payment Card Industry)). Protecting electronic health information is an essential business need for hospital administrators. Fortunately, Wi-Fi has strong encryption and authentication capabilities in the form of WPA2 to assist IT managers in implementing security policies.

The basic security principle in IEEE 802.11 is that each time a client connects to an AP it must complete the authentication process. The two main types of security used are WPA2-Personal and WPA2-Enterprise and each has a different impact on roaming behavior because WPA2-Enterprise requires more steps in the authentication process. When the Enterprise version of Wi-Fi Protected Access® 2 is used, the required authentication when roaming adds time to the authentication or re-authentication process. For mobile devices, this added time may impact real-time streaming client performance. For important clinical applications like telemetry, where mobility is a part of the clinical usage, the use of a fast roaming algorithm such as 802.11r is recommended. As an example, when high quality of service (QoS) applications such as VoIP are used on a properly implemented Wi-Fi network, the combination of WPA2-Enterprise and fast roaming techniques provide a secure and reliable connection. The Wi-Fi Alliance’s Voice-Enterprise certification incorporates these important capabilities and is a key enabler of a high-performing enterprise WLAN.